当前位置:首页 > 网站源码 > 正文内容

数据可视化实例报告(数据可视化经典案例)

网站源码2年前 (2023-01-20)918

今天给各位分享数据可视化实例报告的知识,其中也会对数据可视化经典案例进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

数据可视化实训总结范文怎么写?

数据可视化实训总结

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它能使我们及时找出错误并改正,让我们一起认真地写一份总结吧。总结怎么写才不会千篇一律呢?下面是我精心整理的数据可视化实训总结,仅供参考,希望能够帮助到大家。

数据可视化实训总结1

数据可视化是指将数据间的关系利用图表直观地展示出来。通过数据可视化将大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可从不同的维度观察数据,从而对数据进行更深入的观察和分析。

一、数据分析可视化常用的图表类型有如下几种:

1、表格

2、散点图

3、折线图

4、柱状图

5、条形图

二、可视化分析

2.1想分析购买数量前10名的用户是否是回头客还是客单量大?

对该项分析使用 表格 分析,按购买数量排名前10的用户根据购买日期的次数分析:都是一次性购买,并非回头客用户,企业应该想办法维护这些大客户群。

2.2 根据2.1分析结果继而想到那些回头客购买力度怎么样呢?从而再次对后买日期统计,分析购买次数多的用户:得出本次共分析29944个用户,回头客只有25个,占比0.083%;其中只有1名用户是购买4次的, 其余24名用户只购买2次。商家需要拉些回头客,考虑是否质量过关,是否活动力度不够?

使用一个饼状图更直接看出回头客比重之小

2.3 根据商品种类cat_id统计出销量前10名的商品种类,使用条形图做了可视化分析:

2.4 对20xx年和20xx年总销量分别按照月度和按照季度做 折线图 可视化分析,很明了看出销售变化趋势如下;11月度销量最高,第四季度销量最高。

2.5 分析表2数据,想知道哪个年龄段的儿童服装销量比较高?如下分别用 柱形图 和 散点图 进行可视化图表分析(感觉点状图效果稍好一些),可以看出相同年龄段的男女生销量走势是一致的,且随着年龄增长销量呈下降趋势。

若以3岁为一个阶段,0—3岁为婴儿期间的销量最高,淘宝和天猫市场需求量大。

三、作为数据分析职责的思想总结

在此总结下两篇初步学习数据分析的心得:数据分析首先要掌握常用的数据分析方法,数据分析工具,然后再根据自己公司的产品调整,灵活组合。接下来我要系统学习数据分析知识。数据分析师是一个实践的职位,要在实际项目中不断的训练,才能成为高手。

作为数据分析师我认为的主要职责是要将业务数据清晰、准确、明了的呈现给数据使用者和决策者,比如预测用户的流失,对用户进行自动分类等。你能提供的价值大了。决策者和管理者能够根据呈现的数据结果及时合理调整业务活动,以使企业得到利润最大化。

数据可视化实训总结2

一、数据可视化的定义

数据可视化(Data Visualization)是涉及信息技术、自然科学、统计分析、图形学、交互、地理信息等多种学科交叉领域,通过将非数字的信息进行可视化以表现抽象或复杂的概念和信息的技术。简单的说,这种技术将数据以图表的方式呈现,用以传递信息。人类有五官,能通过5种渠道感受这个物质世界,那么为什么单单要青睐可视化的方式来传递信息呢?这是因为人类利用视觉获取的信息量巨大,人眼结合大脑构成了一台高带宽巨量视觉信号输入的并行处理器,具有超强模式识别能力,有超过50%功能用于视觉感知相关处理的大脑,大量视觉信息在潜意识阶段就被处理完成,人类对图像的处理速度比文本快6万倍,所以数据可视化是一种高带宽的信息交流方式。

如果我们的视野再开阔些,数据可视化从广义上来说包含了三个分支:科学可视化(Scientific Visualization),信息可视化(Information Visualization)和可视分析学(Visual Analytics)。科学可视化是跨学科研究与应用领域,关注三维现象的可视化,在建筑学、气象学、医学或生物学方面的各种系统中有广泛的应用,这个领域研究的数据具有天然几何结构(如磁感线、流体分布等)。

scientific_data_viz。png

信息可视化则研究抽象数据的交互式视觉表示以加强人类认知。抽象数据包括数字和非数字数据,如地理信息与文本,这个领域研究的数据具有抽象的结构,比如柱状图,趋势图,流程图和树状图,这些图表将抽象的概念转化成为可视化信息,常常以数据面板的形式体现。

info_data_viz。png

可视分析学结合了交互式视觉表示以及基础分析过程(统计过程、数据挖掘技术),执行高级别、复杂的活动(推理、决策)。

viz_analysis。png

二、在数据科学全过程中的位置

数据科学的主要组成部分包含三个大的阶段:数据整理,探索性数据分析和数据可视化。站在一个更高的位置来看,数据可视化在数据科学中的位置是比较靠后的,是属于最后的成果展示阶段。如果要从头说起的话,首先,在数据整理阶段,我们的主要任务是数据的获取和解析,包括一系列对原始数据的清洗和加工工作,这一块的知识领域主要涉及计算机科学。紧接着是探索性数据分析阶段,这个阶段要大量使用统计和数据挖掘方面的专业知识,也需要绘制图表来解释数据和探索数据,这个阶段的主要任务是过滤和挖掘。但这个阶段的可视化分析只是你和数据之间的“对话”,是数据想要告诉你什么,而数据可视化则是数据和你的读者之间的对话,是你通过数据想要告诉读者什么,这是它们之间最大的区别。完成了上面两个阶段的内容,才到了我们最后的数据可视化阶段,这是一个多学科交叉的领域,涉及到图形设计,信息可视化和人机交互,我们的主要任务是对信息进行精炼,然后通过可视化表示出来,并与读者产生交互。然而,如果将数据科学的这三个阶段理解为按严格顺序进行的“线性”的模型那就大错特错了,它经历的是一个迭代的,非线性的过程。后面的步骤会让你更了解之前所做的工作,可能到了数据可视化阶段,才意识到还有太多疑点要弄明白,我们需要回到上一步重新进行之前的工作,就像画家翻来覆去才能最终完成一幅杰作一样,数据可视化的过程并不是给数据分析这个刚出炉的蛋糕加点糖霜,,而是有一个反复迭代,不断优化的过程。

三、数据可视化的技术栈

数据可视化是一个再典型不过的多学科交叉领域了,可以说数据可视化所需要用到的知识,就是数据科学庞大知识体系的一个剪影。你会感受到数据科学理性的.一面,同样也会感受到她感性的一面。你可以穷尽自己的一生,在这个浩如烟海的领域中尽情的探索,常学常新,其乐无穷。

四、数据可视化过程

数据可视化的本质,是充分理解业务的基础上对数据进行深入分析和挖掘,然后将探索数据所得到的信息和知识以可视化的形式展现出来。也就是说我们做的工作其实就是从数据空间映射到图形空间。我们要做的第一步工作是充分的结合业务理解数据,然后采用某些方法选择合适的图表类型,这又要求我们先对图表类型有个比较全面的了解。绘制完图表是不是就完成了呢?其实不是。我们还要对图表进行优化,优化所针对的对象是各种图表元素,对此我们有一系列的设计技巧,下面将一步一步的来介绍这些知识。

4.1 结合业务理解数据

离开对业务的理解谈数据分析都是耍流氓。这里介绍一种快速了解数据与业务以开展进一步的探索与分析的方法,叫“5W2H法”。

步骤一:WHAT,这是关于什么业务的什么事?数据所描述的业务主题是什么?

步骤二:HOW,即如何采集的数据?采集规则会影响后续分析,比如如果是后端数据埋点,那么数据一般是实时的;而如果是前端数据埋点,那么就要进一步弄清楚数据在什么网络状态会上传?无网络状态下是如何处理的?这些都会影响最后数据的质量进而影响分析质量。

步骤三:WHY,为什么搜集此数据?我们想从数据中了解什么?数据分析的目标是什么?

步骤四:WHEN,是何时段内的业务数据?

步骤五:WHERE,是何地域范围内的业务数据?

步骤六:WHO,谁搜集了数据(Who)?在企业内可能更关注是来自哪个业务系统。

步骤七:HOW MUCH,各种数据有多大的量,足够支持分析吗?数据充足和不足的情况下,分析方法是有所不同的。如果七个问题中有一个答复不能令人满意,则表示这方面有改进余地。

4.2 选择图表类型

用简单的三个步骤就可以选择合适的图表类型:一看数据类型,二看数据维度,三看要表达的内容。

我们有两种数据类型,每种数据类型又有两个子类别。首先,我们有分类数据和定量数据。分类数据用来表示类别,比如苹果,香蕉,梨子和葡萄,就是水果的4种类别,称为分类定类;有的分类变量是有一定顺序的,比如可以把红酒的品质分为低,中,高三档,人的身材有偏瘦,正常和肥胖等等,这种特殊的分类变量称为分类定序。定量数据也可以进一步分为两类,一类叫连续值数据,比如人的年龄;一类叫离散值数据,比如猫咪的数量。

可视化数据分析报告

可视化数据分析报告

可视化数据分析报告,如果职场上有这些现象也不用惊慌,在职场上不能将这些问题一概而论,如果没有一步步的学习深造就不会做出成绩,学会放下自己的职场压力也是很重要的,我这就带你了解可视化数据分析报告。

可视化数据分析报告1

什么是数据可视化?

数据可视化是指将数据以视觉形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。

文本形式的数据很混乱(更别提有多空洞了),而可视化的数据可以帮助人们快速、轻松地提取数据中的含义。用可视化方式,您可以充分展示数据的模式,趋势和相关性,而这些可能会在其他呈现方式难以被发现。

数据可视化可以是静态的或交互的。几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。

谈谈数据可视化

人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。

但是,并非所有的数据可视化是平等的。

那么,如何将数据组织起来,使其既有吸引力又易于理解?通过下面的16个有趣的例子获得启发,它们是既注重风格和也注重内容的数据可视化案例。

(1)世界上的语言

这个由DensityDesign设计的互动是个令人印象深刻的成果,它将世界上众多(或者说,我们大多数人)的语言用非语言的方法表现出来。一共有2678种。

这件作品可以让你浏览使用共同语言的家庭,看看哪些语言是最常用的,并查看语言在世界各地的使用范围。这是一种了不起的视觉叙事方法:将一个有深度的主题用一种易于理解的方式解读。

(2)按年龄段分布的美国人口百分比

这是如何以令人信服的方式呈现一种单一的数据的好榜样。PewResearch创造了这个GIF动画,显示随着时间推移的人口统计数量的变化。这是一个好方法,它将一个内容较多的故事压缩成了一个小的package。

此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。如果你想自己用Photoshop做GIF,这里有一个详细的教程。

(3)NFL(国家橄榄球联盟)的完整历史

体育世界有着丰富的数据,但这些数据并不总是能有效地呈现(或者准确的说,对于这个问题)。然而,FiveThirtyEight网站做的特别好。在下面这个交互式可视化评级中,他们计算所谓“等级分”–根据比赛结果对球队实力进行简单的衡量–在国家橄榄球联盟史上的每一场比赛。总共有超过30,000个评级。观众可以通过比较各个队伍的等级来了解每个队伍在数十年间的比赛表现。

(4)政治新闻受众渠道分布图

据Pew研究中心称,通常,当设计师在信息内容很多又不能删节的时候,他们通常会把信息放到数据表中,以使其更紧凑。但是,他们使用分布图来代替。为什么呢?因为分布图可以让观众在频谱上看到每个媒体的渠道。在分布图上,每个媒体的渠道之间的距离尤为显著。如果这些点仅仅是在表中列出,观众无法看到每个渠道之间的比较。

(5)Kontakladen慈善年度报告

不是所有的数据可视化都需要用动画的形式来表达。当现实世界的数据通过现实生活中的例子进行可视化,结果会令人惊叹。设计师MarionLuttenberger把包含在Kontakladen慈善年报中的数据以一种独特的方法表现出来。该组织为奥地利的吸毒者提供支持,所以Luttenberger的使命就是通过真实的视觉来宣传。例如,这辆购物车形象的表现了受助者每一天可以负担得起多少生活必需品。

可视化数据分析报告2

什么是可视化数据分析报告?

所谓的可视化数据分析报告就是用视觉表现形式的数据,对其进行全方位的透析,从而提供决策者有根据、有依据地进行判断。

简单来说就是用图形的方式来表征数据的.规律。

一般来说,数据分析报告分为三类:日常运营报告、专项研究报告、行业分析报告。

但无论是哪一类型的报告,都可能不可避免的需要做可视化,那么可视化数据分析报告要怎么做呢?

首先在写报告前,要知道包含哪些内容:目标确定、数据获取、数据清洗、数据整理、描述分析、洞察结论,最后才是撰写数据分析报告。

这是我依据XX学校的学生成绩数据做的三年级学生成绩分析报告,不仅有可视化图表支持分析,还有分析原因,图文并茂,更加容易找出问题原因。

同时还能打印报告和线上分享,电子报告+纸质报告,方便校长审阅与同事们的查看。

这样的可视化数据分析报告我只用了三步:

确定目标:三年级学生成绩整理数据:将所有的三年级学生成绩数据导入库中,然后依据分析目标来做可视化数据分析图表,比如,各班期初、期中、期末考试情况……利用数据报告的功能,通过简单的拖拽操作,快速生成你想要的数据可视化报告并附加分析原因。这样一份又直观、又好看的分析报告就好了。

为什么要做可视化数据分析报告?

传递速度快更直观的展示信息,从而优化运营和管理流程响应分析需求,多角度分析挖掘信息最后要明白一点,可视化数据分析报告的核心是分析,只有数据分析内涵丰富、价值高,数据可视化才能内容丰富、有价值。

可视化数据分析报告3

1、将数据,数据相关绘图,数据无关绘图分离

这点可以说是ggplot2最为吸引人的一点。众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程。

ggplot2将数据,数据到图形要素的映射,以及和数据无关的图形要素绘制分离,有点类似java的MVC框架思想。这让ggplot2的使用者能清楚分明的感受到一张数据分析图真正的组成部分,有针对性的进行开发,调整。

2、图层式的开发逻辑

在ggplot2中,图形的绘制是一个个图层添加上去的。举个例子来说,我们首先决定探索一下身高与体重之间的关系;然后画了一个简单的散点图;然后决定最好区分性别,图中点的色彩对应于不同的性别;然后决定最好区分地区,拆成东中西三幅小图;最后决定加入回归直线,直观地看出趋势。这是一个层层推进的结构过程,在每一个推进中,都有额外的信息被加入进来。在使用ggplot2的过程中,上述的每一步都是一个图层,并能够叠加到上一步并可视化展示出来。

3、各种图形要素的自由组合

由于ggplot2的图层式开发逻辑,我们可以自由组合各种图形要素,充分自由发挥想象力

Tableau可视化分析实战:超市分析报告之客户分析案例

在上一篇文章中我们一起通过超市的数据源简单制作了一个销售情况的图表。这仅仅是Tableau的一些基础入门。如果你忘了怎么操作,可以回到上一篇再回顾一遍。为了方便大家能够清楚小黎子接下来需要做的事情,我们开始使用思维导图绘制本案例最终需要制作的图表内容。

Tableau数据分析可视化操作流程图:

一、连接超市示例数据源

打开Tableau软件,选择左下角已保存数据源。选择示例-超市打开Tableau自带案例,我们通过这个数据源来进行绘制超市分析报告。数据源内容如下:

大家再制作超市分析报告之前,先仔细查看多遍超市数据源示例,确定有哪些字段是我们可以直接使用的。确定数据源中的字段信息后,接下来我们开始创建工作图表。

二、创建客户分析可视化图表

客户进行细分分析可以满足客户的深度分析需要,更好应对客户需求变化。我们可以通过客户分析案例来分析客户的消费特征,以帮助超市选择更合适的运营策略。

客户分析案例将通过四个图表来分析客户:客户交易次数,客户贡献利润额,客户四象限分析,客户交易量排行。最后组合四个图表完成客户分析仪表板。

客户交易次数(地图):客户交易次数也就是我们通常说的再超市购物了多少次,也是购买频率。通过这个指标,我们可以分析客户在一段时间内客户的购买行为的规律。

客户贡献利润额(条形图):我们都知道一件事情没有利润就没有客户质量,利润对于一个企业来说十分重要。在这次展示的图表中我们会通过不同的类别以及地区来反映超市的利润差异。

客户四象限分析(散点图):客户分析对于超市来说非常重要,充分利用客户信息以及客户行为数据。可以准确分析出不同客户对于超市的效益影响,方便后续做出相应的决策依据。

客户交易量排行(条形图):客户交易量排行是指客户在一定时间内购买的数量,通过这个数据我们可以分析客户的价值,一般情况下交易量越大客户的价值越大。

到这里我们就吧客户分析的四个维度图做好了,我们需要将四个图表组合做成客户分析仪表板。

三、创建客户分析工作仪表板

开始从做出的四个工作表中拖放表到图表布局区域

拖动好图表后我们可以看到右侧Tableau自动给我们生成了切片器。我们点击其他的一个元素,其他图形也会随之变化

未完待续

数据可视化 Data Visualization 的原则和案例

原文地址: medium 原文     UXren的翻译

“仪表板”、“大数据”、“数据可视化”、“数据分析”——越来越多人和企业,开始运用他们的数据来做一些有趣的事情。 Telling the story with data!  Data-heavy interfaces. 很多人已经讨论过这个议题,我会围绕创作过程中最具影响力的部分。

一、用户不同,数据不同 Different users, different data

任何时候设计一套Complex system,inevitably要为很多用户users 和角色persona 进行设计.

总裁(Executives), 经理(managers), and 分析师 (analysts) are common personas that each have their own workflows and data needs.不同的角色有 完全不同的视角(perspective)and generating insights。

关于角色,重要的一点是预先确定好,围绕它们来组织信息结构与线框图 wireframes and IA should be around target persona

下面是我们去年做的一款健康报告应用的最终成品。这套系统有着不同的用户群,他们各自都需要不同的数据管理。 创建了关键角色后,我们每次评审会将它们放在旁边 。

做presentation的时候,在满屋子客户面前展示作品是件难事。无论是在解释线框图、流程图,还是就视觉设计进行讨论,都很难让每个人跟上你的观点。 通过角色来组织作品,会防止你(和客户)在这些讨论中跑题。

二、页面layout pattern

页面的layout很重要,如果一开始你就让用户找不到自己想要的 start with distractions,  audience 很难 seeing not just what each element is about, but the focus of the entire passage.

1) 重要的 Logical layout organizing principle : The Inverted Pyramid 

–The most important and substantial information is at the top,

–followed by the significant details that h elp you understand the overview above

them;

–and at the bottom you have general and background information, which will contain

much more detail and allow the reader or viewer to dive deeper

a good book talking about style :  “ Style: The Basics of Clarity and Grace ”.

2)  最小化原则 Minimalism: Less is More

每个页面不应超过5-9个chart,过多的内容会让用户分心。•Each dashboard should contain no more than 5-9 visualizations.  

•通过分层来减少视觉clutter ( avoid visual clutter by layering )

the data by using filters and hierarchies (e.g. instead of having one indicator for amount of

sales in North America and one for South America, give the user the option to apply a filter which changes the same indicator between one and the other) 

•如果真的有很多chart,只需要将他们分开几个页面即可 simply by breaking your dashboard into two or more separate dashboards.

3)不要让形式强过于内容 over-designed visualizations that aren't appropriate for the data.

**Spend your energy on selling the message, not the medium**

**Your job is to solve a problem, not make a picture**

三、选择正确的图形

最糟的是——这些“坏习惯”似乎在成倍增加。随处可见本应是饼形图的面积图,还有本应该是柱状图的曲线图。让我们一起来制止这些设计……下面这些建议有助于你正确对待数据

3.1 始于数据

未经处理的 原始数据表格 一点也没有吸引力。但它是 最佳的起点 。它帮你开始 思考数据中有哪些变量可用variables available,这些变量数据如何关联various data entities are related。

Checking out these great resources to help uncover interesting connections:

Designing Better charts with Google Sheets, Illustrator, and Sketch

Tableau — This tool is one of the best out there, but very expensive. *拆解Tableau的文章以后会有*  Tableau的视频链接

在整个过程中,这部分并没有灵丹妙药。别对深入研究数据心存恐惧,试着混合搭配不同变量,创建基本图表。这需要时间,但它是值得的。我想到的一些绝妙点子,都来自这些原始数据文件的拼拼凑凑。

3.2 处理离散数据和连续数据

每一种图表都有他最擅长表达的领域,数据也可以分类为:连续型数据和离散型数据。 It’s easy to pick charts that look good in your composition and hope your data works out.  

数据的种类 Types of data + 用户的目的 user's purpose  == which type of chart to choose.

离散数据 Discrete Data — distinct values you can count. For example, a number of goals scored or Facebook likes.

连续数据 Continuous Data ——任何范围值 range of value。比如一季的降雨量,或一个人的身高体重。

 So, how to choose the correct pattern ?

1)   Compare different discrete values over a period of time?comparison between different value across time or different categories.

  Bar Chart (length and end point of bar )清楚表达数据之间关系;说明每一个的具体数值;容易比较数值;容易看出趋势;

2) View trending ? 

    Line-chart

3) Analysis the percentage proportion, specially " part –to- whole" relationship ? 

   Pie charts are usually used to showrelational proportions between data and use arc length

to present the percentage of total.understand the relative contributions of each part to the whole清楚表达数据之间关系-尤其是part of whole;不能说明每一个的具体数值;不容易比较数值;无法看出趋势;(it's hard to compare slice)

4)view where/which area has the highest population , usage

    Distribution chart 

5) 观察几个不同的特点,技能等的分布情况 ( character strength )

      Radar Chart

“ The Wall Street Journal: Guide to information Graphics ” by Dona Wong. 帮我凝练了其中精髓。真希望几年前我就有这本书。这是本无价的参考书,帮你选用合适的图表,阐明信息展现的行为准则。

3.3  选择哪个analysis patterns?回答几个问题:(不需要都满足,根据使用条件)

–Clearly indicates how the values relate to one another, which in this case is a part-to-whole relationship - the number of deaths per cause, when summed, equal all deaths during the

year.清楚表达了数据间的关系

–Represents the quantities accurately.表达了具体的数值

–Makes it easy to compare the quantities.容易比较数值

–Makes it easy to see the ranked order of values, such as from the leading cause of death to the least.容易看出趋势或者顺序

–Makes obvious how people should use the information - what they should use it to accomplish - and encourages them to do this.明显让人明白如何使用数据

3.4 Dashboard 的目的:

1) 化繁为简,将抽象数据变成直接易懂的物理形态 To translate abstract data into easily understanding physical attribute (length, size, shape..), for better analysis and understand. –Make complex simple 

2)Explain Data to Solve Specific Problems : (解释数据) – answer view’s question

3)Explore Large Data Sets for Better Understanding (数据挖掘)

4)对于很直接的,常用的结果,直接用文字表达出来

四、基本的或定制化的图形 Basic vs. Custom visualizations

As the designer of these data-rich systems you have to constantly ask yourself “ should I let users to customize the chart ? Or should I use tried-and-true charts to articulate the message?”. 是可以让用户自我定制?还是采用统一的模板呈现?

最近无意中读到这篇来自 37 Signals的文章—— 只要3种图表就够了 。( )作者强烈表达一个观点,图形的“有效性”胜过它的视觉特征。我非常赞同文中这一观点。不过,我觉得他的观点代表着一种极端实用主义的视角。我相信定制化的图形通常也能提升数据的易用性,同时独具一格引人入胜。

然而,作为专业的设计师,我希望我的作品看起来和感觉上是独特且有用的。

比如,纽约时报做得很好,通过定制化的交互式图形,来为他们的文章添彩。可以在这里看到更多他们的作品。我们来看一些完美的定制化图表案例:这个案例对曲线图做了调整,让人“一睹”那些支撑图表的基本数据。(puts a twist on a line graph by offering a “peek” into the underlying data driving the chart. )结合了distribution chart 和line chart,distribution 作为背景。

五、让用户花 5秒钟,找到自己想要的

5.1  Dashboard should be able to answer your most frequently asked business questionsat a glance. Ad-hoc investigation will obviously take longer; but the most important metrics,the ones that are most frequently needed for the dashboard user during her workday, should immediately ‘pop’ from the screen.

答案是:这样人们才能使用——做决策、调研、预测未来,什么都行。关键是,用户不会沉浸于你所选的漂亮色彩,他们是来工作的。

我的建议是——在你排布好页面一切就绪后,问问自己“那又如何?”。看看每个图表、组件、表格,仔细考虑人们从中能获取到什么。

通常你会得出这样的结论,“这些都不重要”,这就意味着要减少或是重新思考。

这在我身上发生过好几次——我创作了复杂漂亮的仪表板,包含了一系列时尚的图表、饼形图,还有成千上万数据点构成的地图。

但总是被客户质疑“我只想知道这样有效吗……我要的东西在哪?”还有“我只要3样东西……X、Y和Z。哪里可以看到它们?”

哎,这时候你才会意识到自己迷失在杂草丛中,遗失了重点。

我会有个办法,尝试使用文字来精确表达人们所要的东西。

5.2  Method:

Understand user’s requirements , highlight it through: put it visible position, give text to directly indicate the result.

尝试使用文字来精确表达人们所要的东西。

在重要信息上,文字总结可能比图表更有效。两者都

通过文字展现用户所需的信息,并没有依赖需要解释说明的图表。

这个方法使我们的客户产生共鸣,尤其在重要信息上。但我之前提过,总要考虑各种角色,所以要用在适当的地方。就像其他所有形式的设计一样,它也需要一种平衡。

力求使你的数据与众不同,但是要避免过度设计和无谓的分心。

为数据选择正确的图形,但别忘了有层次地构建页面。

无论多么单调、令人沮丧,还要打磨每个小细节……还有别忘了问自己,“那又如何?”

数据可视化的16个经典案例

[数据可视化]

本文编译自:Ross Crooks

数据可视化是指将数据以视觉的形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。通过观察数字、统计数据的转换以获得清晰的结论并不是一件容易的事。而人类大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释数据模式、趋势、统计数据和数据相关性,而这些内容在其他呈现方式下可能难以被发现。

数据可视化可以是静态的或交互的。几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。

我们必须用一个合乎逻辑的、易于理解的方式来呈现数据。但是,并非所有数据可视化作品的效果都一样好。那么,如何将数据组织起来,使其既有吸引力又易于理解?让我们通过下面的16个有趣的例子获得启发,它们是既注重风格也注重内容的数据可视化经典案例。

1:为什么会有“巴士群”现象

这里有一个关于复杂数据集的很好的例子,它看起来感觉像一个游戏。在这个例子里,Setosa网站为我们呈现了“巴士群”现象是如何发生的,即当一辆巴士被延迟,就会导致多辆巴士在同一时间到站。

只用数字讲述这个故事是非常困难的,所以取而代之的是,他们把它变成一个互动游戏。当巴士沿着路线旋转时,我们可以点击并按住一个按钮来使巴士延迟。然后,我们所要做的就是观察一个短暂的延迟如何使巴士在一段时间以后聚集起来。

2:世界上的语言

这个由DensityDesign设计的互动作品令人印象深刻,它将世界上众多(或者说,我们大多数人)语言用非语言的方法表现出来,一共有2678种。

这件作品可以让你浏览使用共同语言的家庭,看看哪些语言是最常用的,并查看语言在世界各地的使用范围。这是一种了不起的视觉叙事方法:将一个有深度的主题用一种易于理解的方式进行解读。

3:按年龄段分布的美国人口百分比

应该用什么方式去呈现一种单一的数据?这是一个令人信服的好榜样。

Pew Research创造了这个GIF动画,显示人口统计数量随着时间推移的的变化。这是一个好方法,它将一个内容较多的故事压缩成了一个小的动图包。此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。

4:NFL(国家橄榄球联盟)的完整历史

体育世界有着丰富的数据,但这些数据并不总是能有效地呈现。然而,FiveThirtyEight网站做得特别好。

在下面这个交互式可视化评级中,他们对国家橄榄球联盟史上的每一场比赛计算“等级分” – – 根据比赛结果对球队实力进行简单的衡量 。总共有超过30,000个评级,观众可以通过比较各个队伍的等级分来了解每个队伍在数十年间的比赛表现。

5:Google Flights 上的美国感恩节

下面是将一段时间内在空中移动的物体进行可视化的好方法。这是由Google Trends驱动的项目,它跟踪感恩节前出发、到达和穿越美国的航班。

可视化始于当天很早的时间,随着时间的推移,像播放电影一样显示在全国各地飞行中的航班。不需要显示时间外的任何数字,观众即可以看到当天哪段时间是国际航班、国内航班以及往返于全国各地不同枢纽的航班的热门时间。

6:是什么真正造成了全球变暖?

我们都知道,“不要只简单地展示数据,讲个故事吧”。这正是彭博商业正在做的可视化 ——用互动的方式来讲述故事的来龙去脉。。

此图的关键是要反驳用自然原因解释全球变暖的理论。首先你会看到从1880年至今观测到的温度上升情况。为了使故事内容更加丰富,当你向下滚动时,这个可视化图会让你清楚的了解到相较于已被观测到的因素,造成全球变暖的不同因素到底有多少。作者希望观众能够得到非常清晰的结论。

7:在叙利亚,谁和谁在战斗?

许多不同的团体之间的关系可能令人很难理解 – 尤其是当有11个这样的团体存在的时候。这些团体之间有的结盟,有的敌对,反之亦然。这让人难以理解。

但是,Slate网站通过表格的形式和熟悉的视觉表达,将这些数据简化为一种简单的、易于理解和可交互的形式。观众可以点击任一张脸来查看双方关系的简要描述。

8:最有价值的运动队

这是通过叠加数据来讲述深层故事的一个典型例子。

这个交互由Column Five设计,受福布斯“2014年最具价值的运动队50强”名单得到的启发。但是它不仅将列表可视化,用户还可以通过它看到每支队伍参赛的时间以及夺得总冠军的数量。这为各队的历史和成功提供了更全面的概况信息。

9:美国风图

下面是一个类似感恩节航班的可视化图,除了图中显示的时刻,它还能实时显示美国本土的风速和风向。

它是直观设计的一个很好的案例:风速用线条移动的快慢来表示,方向通过线条移动的路径来表示。它会即时显示美国风向的总体趋势,无需任何数字,除非你在地图上点击鼠标。另外,使用时设定最多两个变量会使它更容易操作。

10:政治新闻受众渠道分布图

据Pew研究中心称,当设计师在信息内容很多又不能删的时候,他们通常会把信息放到数据表中,以使其更紧凑。但是,他们在这里使用分布图来代替。

为什么呢?因为分布图可以让观众在频谱上看到每个媒体的渠道。在分布图上,每个媒体的渠道之间的距离尤为显著。如果这些点仅仅是在表中列出,那么观众就无法看到每个渠道之间的对比效果。

11:著名创意人士的日程安排

这个数据可视化图是用奇特的想法描绘出的一个简单概念。这个表格利用Mason Currey的《日常惯例》一书中的信息展示了那些著名创意人士的日程安排,解读其时间和活动安排。这不仅是一个数据分析的例子(因为你可以通过单独的活动来浏览日程安排),也是一个品牌宣传的佳作。

12:今年发生了哪些新闻?

最好的数据可视化方式,就是用直观和美丽的方式传达信息。Echelon Insights致力于这一方式,将2014年Twitter上最受关注的新闻进行了可视化。

1亿8450万条推文是什么样子?就是如下图所示的艺术品。

13:问题的深度

当你想强调规模的时候,静态数据可视化是表达你的观点的极佳方式。下面这张来自《华盛顿邮报》的信息图长得令人难以置信…这是故意的。他们在图中展示了一架飞机可以探测到的深海信号是多么的深,通过比较飞机的探测深度与高层建筑、已知哺乳动物的最大深度、泰坦尼克号沉船的深度等。这是简单的视觉效果和颜色梯度的极佳使用方式。

最后,将数据添加到新闻报道中(文中为失踪的马航)是提供背景的好方式。

14:前沿预算

上述图表相对简单,以下是创造设计精致的、传递大量数据的图表的方法。秘诀何在?——用简单和干净的格式,便于读者理解数据。

这个由GOOD Magazine 和 Column Five制作的图表,解读了NASA的五年预算,显示资金将怎么花、花在哪里。此外,它还有一个主题设计,这真是一个全面成功的作品!

15: Kontakladen慈善年报

不是所有的数据可视化都需要用动画的形式来表达。当现实世界的数据通过现实生活中的例子进行可视化,结果会令人惊叹。设计师Marion Luttenberger把包含在Kontakladen慈善年报中的数据以一种独特的方法表现出来。

该组织为奥地利的吸毒者提供支持,所以Luttenberger就通过现实生活中的视觉元素来宣传他们的使命。例如,这辆购物车的形象表现出受助者每一天可以负担得起多少生活必需品。

16:奥地利太阳能年报

虽然有许多方法都能使数据可视化,但是其中,使用真实信息主体去创建数据可视化作品的做法非常了不起。这份来自Austria Solar的年度报告,通过在页面上使用太阳光感墨水,用真正的太阳能给公司数据赋予生命。

一句话总结:他们是天才。

大数据 分类型数据可视化方法研究报告

大数据:分类型数据可视化方法研究报告

数据可视化可以将海量数据通过图形、表格等形式直观反映给大众。降低数据读取门槛,可以让企业通过形象化方式对自身产品进行营销。

一、数据可视化原理

数据化可视原理是综合运用计算机图形学、图像、人机交互等技术,将采集或模拟的数据映射为可识别的图形、图像、视频或者动画,并允许用户对数据进行交互分析的理论方法和技术。

数据可视化可以将不可见的现象转换为可见的图形符号,并从中发现规律从而获取知识。在实际应用中,它可以针对复杂和大规模的数据,还原增强数据中的全局结构和具体细节。

二、 可视化方法

1. 数据采集:数据是可视化对象,可以通过仪器采样,调查记录、模拟计算等方式采集。在可视化解决方案中,了解数据来源采集方法和数据属性,才能有的放矢解决问题。

2. 数据处理和变换:原始数据含有噪音和误差同时数据模式和特征往往被隐藏。通过去噪、数据清洗、提取特征等变换为用户可理解模式。

3. 可视化映射(核心):将数据的数值、空间坐标、不同位置数据间的联系等映射为可视化视觉通道的不同元素如标记、位置、形状、大小和颜色等。最终让用户通过可视化洞察数据和数据背后隐含的现象和规律。

4. 用户感知:用户感知从数据可视化结果中提取信息、知识和灵感。数据可视化可用于从数据中探索新的假设,也可严重相关假设与数据是否吻合,还可帮助专家向公众展示数据中的信息。

用户感知可以在任何时期反作用于数据的采集、处理变换以及映射过程中,如下图所示:

三、具体操作

1. 将指标值图形化

一个指标值就是一个数据,将数据的大小以图形的方式表现。比如用柱形图的长度或高度表现数据大小,这也是最常用的可视化形式。

传统的柱形图、饼图有可能会带来审美疲劳,可尝试从图形的视觉样式上进行一些创新,常用的方法就是将图形与指标的含义关联起来。

比如 Google Zeitgeist 在展现 top10 的搜索词时,展示的就是“搜索”形状的柱形,图形与指标的含义相吻合,同时也做了立体的视觉变化:

2. 将指标图形化

一般用在与指标含义相近的 icon 来表现,使用场景也比较多,如下:

3. 将指标关系图形化

当存在多个指标时,为了挖掘指标之间的关系并将其进行图形化表达,可提升图表的可视化深度。常见有以下两种方式:

借助已有的场景来表现

联想自然或社会中有无场景与指标关系类似,然后借助此场景来表现。

比如百度统计流量研究院操作系统的分布(上图),首先分为 windows、mac 还有其他操作系统, windows 又包含 xp、2003、7等多种子系统。

宇宙星系中也有类似的关系:宇宙中有很多星系,我们最为熟悉的是太阳系,太阳系中又包括各个行星。根据这种关系联想,图表整体借用宇宙星系的场景,将熟知的Windows比喻成太阳系,将XP、Window7等系统比喻成太阳系中的行星,将Mac和其他系统比喻成其他星系。

构建场景来表现

指标之间往往具有一些关联特征,如从简单到复杂、从低级到高级、从前到后等等。如无法找到已存在的对应场景,也可构建场景。

比如百度统计流量研究院中的学历分布:指标分别是小学、初中、高中、本科等等。

各个类目之间是一种阶梯式的关系,因此,平台就设计了一个阶梯式的图直观的反映出了数据呈阶梯式递进的趋势。

再比如:支付宝年初出的个人年度账单中,在描述付款最多的三项时设计了一个类似颁奖台的样式也很出彩:(然而并没有觉得我在哪个类目买买买付款最多有什么骄傲的)

下方图示为供参考的线性化过程,实际可视化思考中,将哪类元素进行图形化或者图形化前后的顺序可能均有不同,需根据具体情况处理。

4. 将时间和空间可视化

时间

通过时间的维度来查看指标值的变化情况,一般通过增加时间轴的形式,也就是常见的趋势图。

空间

当图表存在地域信息并且需要突出表现的时候,可用地图将空间可视化,地图作为主背景呈现所有信息点。

Google Zeitgeist 在 2010 和 2012 年的年度热门回顾中,都是以地图为主要载体(同时也结合了时间),来呈现热门事件:

5. 将数据进行概念转换

先看下生活中的概念转换,当我们需要喝水时,通常会说给我来杯水而不是给我来500ml 的水。要注意来(一)杯水,是具象的,并不是用量化的数据来形容。在这里,500ml就是一个具体的数据,但是它难以被感知,所以用(一)杯的概念来转换。

同样在数据可视化,有时需要对数据进行概念转换。这是为了加深用户对数据的感知,常用方法有对比和比喻。感知就是一个将数据由抽象转化为具象的过程。

对比

比如下图就是一个介绍中国烟民数量的图表。如果只看左半部分中国烟民的数量:32000000(个十百千万十万百万千万亿…)好吧数据量级很大,不论是数零还是数逗号都很容易数错,而且具体这个数字有多大仍然很难感知。让我们目光向右移动,来看右半部分:中国烟民数量超过了美国人口总和,太恐怖了。这样一对比,对数据的感知就加深了。

比喻

下图是一个介绍雅虎邮箱处理数据量大小的图表,大概就是说它每小时处理的电子邮件有近1.2TB,相当于644245094 张打印的纸。

上面这个翻译很无聊是不是,但这并不是问题的重点,这个数它到底有多大呢?文案中用了一个比喻的手法:大意就是将这些邮件打印出来首尾相连可以绕地球4圈。嗯,比香飘飘奶瓶还多3圈。到这里,我相信大家肯定能初步感受到雅虎邮箱每天处理的数据量有多大了吧,而且还没有被打印出来,为地球节省了很多纸(假装环保)。

6.让图表“动”起来

数据图形化完成后,可结合实际情况,将其变为动态化和可操控性的图表,用户在操控过程中能更好地感知数据的变化过程,提升体验。

实现动态化通常以下两种方式: 交互和动画。

交互

交互包括鼠标浮动、点击、多图表时的联动响应等等。下面是百度统计流量研究院的时间分布图,该分布图采用左图右表的联动形式,左图中鼠标浮动则显示对应数据,点击则可以切换选择:

动画

动画包括入场动画、交互过程的动画和播放动画等等。

入场动画:即在页面载入后,给图表一个“生长”的过程,取代“数据载入中”这样的提示文字。

交互动画:用户发生交互行为后,通过动画形式给以及时反馈。

播放动画:通俗的来说就是提供播放功能,让用户能够完整看到数据随时间变化的过程。下图是 Gapminder 在描述多维数据时,提供随时间播放的功能,可以直观感受到所有数据的变化。

数据可视化实例报告的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数据可视化经典案例、数据可视化实例报告的信息别忘了在本站进行查找喔。

扫描二维码推送至手机访问。

版权声明:本文由我的模板布,如需转载请注明出处。


本文链接:http://390c.top/post/1508.html

分享给朋友:

“数据可视化实例报告(数据可视化经典案例)” 的相关文章

微信小程序跑腿系统开(免费使用跑腿小程序)

微信小程序跑腿系统开(免费使用跑腿小程序)

本篇文章给大家谈谈微信小程序跑腿系统开,以及免费使用跑腿小程序对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、微信小程序入口在哪 微信小程序怎么打开 2、xp系统怎么打...

不用网络的无线监控摄像头(不用网络的无线监控摄像头室外用)

不用网络的无线监控摄像头(不用网络的无线监控摄像头室外用)

本篇文章给大家谈谈不用网络的无线监控摄像头,以及不用网络的无线监控摄像头室外用对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、没有WiFi能装监控吗? 2、家里装监控需...

十大手游交易平台排行榜交易猫(手游游戏交易平台排行榜)

十大手游交易平台排行榜交易猫(手游游戏交易平台排行榜)

今天给各位分享十大手游交易平台排行榜交易猫的知识,其中也会对手游游戏交易平台排行榜进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、十大手游交易平台排行榜...

斗罗大陆2武魂觉醒攻略(斗罗大陆2武魂觉醒攻略大全)

斗罗大陆2武魂觉醒攻略(斗罗大陆2武魂觉醒攻略大全)

本篇文章给大家谈谈斗罗大陆2武魂觉醒攻略,以及斗罗大陆2武魂觉醒攻略大全对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、《斗罗大陆:武魂觉醒》荒野行纪第五章通关攻略 《斗...

华为手机怎么看什么型号(华为手机怎么看什么型号的)

华为手机怎么看什么型号(华为手机怎么看什么型号的)

今天给各位分享华为手机怎么看什么型号的知识,其中也会对华为手机怎么看什么型号的进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、怎样查看自己是用的华为什么型号的...

视频编辑器下载安装(视频编辑器下载安装手机)

视频编辑器下载安装(视频编辑器下载安装手机)

本篇文章给大家谈谈视频编辑器下载安装,以及视频编辑器下载安装手机对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、视频编辑器哪里免费下载? 2、用手机制作视频用什么软件?...